

NASA Operational Simulator (NOS)

A Reusable Software-Only Verification & Validation (V&V) Architecture

http://www.nasa.gov/centers/ivv/JSTAR/ITC.html

Justin R Morris

Justin.R.Morris@nasa.gov

NASA IV&V Facility 100 University Drive Fairmont, WV 26554

Agenda

- Independent Test Capability (ITC)
 - Jon McBride Software Testing & Research Lab (JSTAR)
- NASA Operational Simulator (NOS)
 - Architecture
 - Middleware
- NOS Utilization
 - Global Precipitation Measurement (GPM) Operational Simulator (GO-SIM)
 - James Webb Space Telescope (JWST) Integrated Simulation and Test (JIST)
- Closing Remarks

Independent Test Capability (ITC)

Charter

Acquire, develop, and manage adaptable test environments that enables the dynamic analysis of software behaviors for multiple NASA missions

Independent Test Capability (ITC)

- ITC Develops System Simulators
 - Experts in Hardware Modeling and Distributed Simulation
 - Experts in Simulator & Software Integration
- NOS Architecture
 - Reusable Hardware Models
 - Custom Middleware
- System Test Automation
- Typical NOS Users
 - V&V and IV&V Engineers
 - Project Developers
 - Operators and Testers

Jon McBride Software Testing & Research (JSTAR) Laboratory

- Cloud-based infrastructure using server and desktop virtualization
- Large scale simulator deployments
- Hardware-in-the-loop and software-only test environments
- Integration of COTS and GOTS software tools to support V&V activities

Mission Support

Global Precipitation Measurement (GPM) Operational Simulator (GO-SIM)

Closed-loop simulator including <u>unmodified</u> operational ground system, <u>unmodified</u> flight software, environmental simulator, and science instrument simulators

James Webb Space Telescope (JWST) Integrated Simulation and Test (JIST)

Simulator that demonstrates reusable NOS technologies can be applied to other NASA missions

NASA Operational Simulator (NOS)

NASA Operational Simulator (NOS)

- Software-only simulation architecture (common components from inhouse software simulation development)
- Capable of executing unmodified flight software executable(s)
- Custom layered-architecture middleware
- Dynamic interception capability
- Reusable software modules and scripts
- Virtual machine deployment

Typical NOS Architecture (Space Domain)

NOS Feature Set

Plug-and-Play Hardware Models

Processors, Boards, Racks

Use of Operational Ground Systems Software

Instrument Model Framework

Instrument1

- Subaddress HandlerA → FunctionA
 Subaddress HandlerB → FunctionB
 - Daddless Halldleib /
- Subaddress HandlerN → FunctionN

InstrumentX

- Subaddress HandlerA → FunctionA
- Subaddress HandlerB → FunctionB
- •••
- Subaddress HandlerN → FunctionN

Internal Bus Monitoring

NOS Middleware

Deployment & Maintenance

Virtualization

NOS Middleware

Overview

- ✓ Offers re-usable communication mechanism
 - Ensures consistent and correct data passing
- Provides synchronization between distributed applications
- ✓ Flexible and extensible design
 - Can be extended to incorporate any communication protocol

Features

- ✓ Transport agnostic
- ✓ Cross platform C++ implementation
- ✓ Robust User API
- ✓ Specialized User API Layers
 - MIL-STD-1553B
 - ESA SpaceWire
 - Discrete Signals
 - Time Synchronization
- ✓ Interception allows for V&V analysis
 - No modification to softwareunder-test

NOS Middleware Architecture

NOS Dynamic Interception

NOS User Interfaces MIL-STD-1553

NOS User Interfaces SpaceWire

NOS Software Utilities

- Virtual Oscilloscope
 - Virtual CompactPCI (cPCI) Analysis
 - Board-Level Signal Analysis

```
0x16d28 49732611220} output signal lowered 0x16d04 49734659404} output signal raised 0x16d28 49736707599} output signal lowered 0x16d04 49738755772} output signal raised 0x16d28 49740803956} output signal lowered 0x16d04 49742849199} output signal raised 0x16d28 49744897380} output signal raised 0x16d04 49746945570} output signal raised 0x16d28 49748993748} output signal raised 0x16d28 49751041977} output signal raised 0x16d28 49753090140} output signal raised 0x16d28 49753090140}
```

- Virtual MIL-STD-1553 Bus
 - Bus Controller with XML Defined Schedules
 - Remote Terminal
 - Bus Monitor/Logger
 - PASS3200 Software Emulator
- Virtual SpaceWire Router

```
<
```


GO-SIM

1. GPM GSFC Flight Software Testers

✓ Dry run test procedures; reduce required use of lab resources

2. GPM Software Safety

✓ Tool kit to support safety studies

3. **GPM IV&V Engineers**

- ✓ Provides flexible testing platform for IV&V personnel
- ✓ Independent Testing & Risk Reduction

JIST

4. JIST Development Team

✓ Spacecraft simulation environment setup in ½ time due to GO-SIM architecture

5. JWST IV&V Engineers

- ✓ Risk reduction simulator under development
- ✓ Supported processor offline mode test efforts

GPM Operational Simulator (GO-SIM)

GPM Operational Simulator GO-SIM

Components

- COTS Emulator
- Primary Instrument
 Simulations (GMI/DPR)
- GPM Ground System
- GSFC Goddard Dynamic Simulator (GDS)
- NOS Middleware
- GPM Hardware Models

Capabilities

- Load and run unmodified flight software binaries
- Execute test flight scripts
- Single-step debugging
- Inject errors via ground system and NOS middleware
- Stress system under test

James Webb Space Telescope (JWST) Integrated Simulation and Test (JIST)

JWST Integrated Simulation and Test (JIST)

- Software-only spacecraft simulator
- Flexible environment to support V&V activities
- Unmodified ground system and scripts
- Unmodified software-under-test binaries
- Integration of COTS, GOTS and in-house developed components
- Custom hardware models
- Automated Testing Framework

Virtualized Deployment

Closing Remarks

- NOS provides a generic software-only simulation architecture that has been utilized on NASA missions
- NOS architecture is transparent to user
- New instantiations of NOS require customization for missions/projects → NOS has demonstrated significant cost and time savings
- NOS provides reusable hardware models
- NOS provides custom-developed middleware with user APIs and interception
- NOS extends to other domains
 - Large complex systems
 - Distributed components

Contact Information

- Web Page
 - http://www.nasa.gov/centers/ivv/jstar/JSTAR.html
- E-Mail
 - Justin.R.Morris@nasa.gov
 - Team Mailing List: <u>ivv-itc@lists.nasa.gov</u>